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Path-Integral and BRST Quantization in a Pure
Supersymmetric Anyon Model
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The constraint structure of a pure supersymmetric anyon model with U(1) gauge
symmetry is analyzed in the framework of the symplectic Faddeev±Jackiw
formalism. Then the path-integral method is used to develop the perturbative
formalism. The Feynman rules and the diagrammatics are given. Finally, the
results are compared to those obtained by means of the BRST formalism.

1. INTRODUCTION

Anyonic excitations can be analyzed from different theoretical

approaches (see, for instance, refs. 1±14), but a natural way to treat fractional

spin and statistics is by means of supersymmetric anyon models.
In the framework of gauge theories, an interesting supersymmetric for-

mulation of pure anyon theories is presented in ref. 13. Starting from the

standard formalism of pure anyon theories in terms of the U(1) statistical

Chern±Simons (CS) field, a minimal supersymmetric model with fractional

spin and statistics is constructed. This is done by direct generalization of the
nonsupersymmetric case. The first important result is that the fields of spin

s are connected with the fields of spin s 1 1±2 by means of the supersymmetry.

When the particle content and the interactions of the model are explored, an

anyon±anyon interaction required by supersymmetry naturally appears. So

the main conclusion is that in this type of model the interaction among anyons

is a direct requirement of supersymmetry. This fact can be seen from a general
point of view by defining a minimal coupling among a suitably conserved

current superfield and a gauge spinor superfield. There are several reasons

and advantages in considering anyon theories in the supersymmetry frame-
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work. For instance, when the problem of spontaneous symmetry breaking is

treated, both the supersymmetry and the internal gauge symmetries are rele-

vant, and so the different physical meaning of both symmetry breakings are
always present.

The purpose of this paper is to study a supersymmetric anyon model in

the framework of the perturbative quantum theory by giving the Feynman

rules and diagrammatics of the supersymmetric model. The first step is to

study the constraint structure. This can be done by using the usual Dirac

method for Hamiltonian constrained systems.(15)

An alternative way to treat constrained systems is by using the symplectic

Faddeev±Jackiw (FJ) Lagrangian method.(16) This seems to be more economi-

cal when it is applied to a supersymmetric model having several constraints

because it involves a minor number of constraints.

The FJ symplectic formalism has been studied carefully by several

authors.(17±23) The supersymmetric generalization of the FJ symplectic formal-
ism including Grassmann field dynamical variables was given in refs. 24 and

25, but is not often used in supersymmetric systems.

Recently(26) the key equations of the supersymmetric extension of the

FJ symplectic formalism were written in such a way that the inverse of the

symplectic matrix is easily computed. The results were applied to study the
constraint structure of supersymmetric anyon models.

In this paper, by using our results, we carry out the quantization of a

pure supersymmetric anyon system by means of the path-integral formalism.

The paper is organized as follows: In Section 2, we briefly describe the

classical supersymmetric Lagrangian theory for pure anyon systems by writ-

ing the constraints provided by the FJ formalism. In Section 3, we construct
the perturbative formalism by using the path-integral method.(27) The Feynman

rules and the diagrammatics are found. Finally, in Section 4, the supersymmet-

ric model is analyzed from the Becchi±Rouet±Stora±Tyupin (BRST)

formalism.(28)

2. PRELIMINARIES AND CLASSICAL SUPERSYMMETRIC
LAGRANGIAN

In this section, the main results of ref. 26 are used in order to determine

the supersymmetric Lagrangian density and the constraint structure.

As shown in Section 3 of ref. 26, the starting point is to consider
the minimal supersymmetric action for pure anyon theories by using scalar

superfields in the superspace of coordinates (x m , u a ) ( u 5 0, 1, 2), where u a

( a 5 1, 2) is a Majorana spinor. Once the action is written, the integration on

the Grassmann variables u a can be performed and the minimal supersymmetric
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Lagrangian density in components, in the Wess±Zumino (WZ) gauge, reads

as follows:

+WZ 5 D m w *D m w 2 m2 w * w 1 c (i g m D m 2 m) c 1 ie ( c l w 2 l c w *)

1
e2

4 p q
e m n r A m - n A r 2

e2

4 p q
l l (2.1)

where A m is the statistical field with gauge symmetry U(1), q is the statistical

parameter, and D m 5 - m 2 ieA m is the covariant derivative. In equation (2.1),
w is a complex scalar field, c is a Dirac spinorial field, and l a (gaugino) is

a Majorana spinor, superpartner of A m .

The convention used is e 012 5 e 12 5 1, and the Minkowskian metric is

g m n 5 diag(1, 2 1, 2 1). In this paper, we use the (2 1 1)-dimensional

representation of the Clifford algebra with the Dirac g -matrices g 0 5 s 2,

g 1 5 i s 1, and g 2 5 i s 3, where the s i are the Pauli matrices.
In order to simplify algebraic manipulations in the Lagrangian density

(2.1), we do not write the gauge kinetic term ( 2 1±4F m n (A)F m n (A)) for the

statistical field A m and the corresponding kinetic term (1±2 i l g m - m l ) for the

gaugino field l . In the absence of the kinetic term, the U(1) gauge field A m

is nondynamical as is its superpartner l . This does not change the results
because the fractional statistics described by the Lagrangian density (2.1)

only depends on the presence of the CS term (and the supersymmetric partner)

breaking both parity and time-reversal invariance.

Another simplification is to consider the WZ gauge. We have called the

Lagrangian density (2.1) supersymmetric. Nevertheless, it is known that in

the WZ gauge this property is lost.
In order to guarantee invariance under both supersymmetry and gauge

tranformations, other fields which are purely geometric objects must be

included. This must be taken into account in problems of symmetry breaking,

but it is not necessary for our purpose.

Consequently, the Lagrangian density (2.1) describes the interacting

theory of a field w of spin s 5 q /2 and a field c of spin s 5 1±2 1 q /2 (and
their conjugates) in a particular gauge. Moreover, when the gauge coupling

is taken to zero, e ® 0, both the anyon behavior and the interaction terms

go away, while supersymmetry remains. The supersymmetry also can be

eliminated while the fractional spin and statistics are maintained. In this last

case, the model is reduced to a bosonic or a fermionic anyon system. Also,
it can be seen how the supersymmetry naturally leads to anyon±anyon interac-

tions given by the fourth term of equation (2.1) through the couplings to the

gaugino l a , superpartner of the U(1) gauge field A m . The gaugino mass term

(e2/4 p q ) l l is also present, serving as gauge-invariant mass term for the

gauge field A m .
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As noted in the introduction, the information about the constraint struc-

ture can be obtained by following the usual Dirac algorithm. For the reason

given above, it is convenient to use the supersymmetric extension of the
symplectic FJ method given in ref. 26.

As is well known, the symplectic FJ method is formulated for actions

only containing first-order time derivatives. So the starting point is to write

the Lagrangian density (2.1) in first-order form as follows(26):

+(0) 5 w Ç K w 1 w Ç * K w * 1 AÇ i Ki
A 1 c Ç a K c a 2 V (0) (2.2)

where i 5 1, 2 is a spatial index.

The symplectic potential V(0) is given by

V (0) 5 2 - i w * - i w 1 P w P*w 1 m2 w * w 1 m c c 2 i c g i - i c 2 e2 A2( w * w )

1 ieA0(P*w w 2 P w w *) 1 ieAi( - i w * w 2 w * - i w )

2
e2

2 p q
e ij - iAjA0 2 ie( c l w 2 l c w *) 1

e2

4 p q
l l (2.3)

and the coefficients in the symplectic part of (2.2) are

K w 5 P*w 5 w Ç * 1 ieA0 w * (2.4a)

K w * 5 P w 5 w Ç 2 ieA0 w (2.4b)

Ki
A 5

e2

4 p q
e ijAj (2.4c)

K c a 5 c a (2.4d)

KA0 5 0 (2.4e)

K l 5 0 (2.4f)

Therefore, the initial set of symplectic variables defining the extended

configuration space of the dynamical system is given by ( w , P*w , w *, P w , A m ,

c , l ). As shown in ref. 26, the symplectic supermatrix M 0
AB (x, y) is singular.

From the explicit expression of the symplectic supermatrix M 0
AB (x, y) it can

be seen that according to the singular symplectic variables A0 and l the

following two constraints can be found:

V 1 5 ie(P*w w 2 P w w *) 2
e2

2 p q
e ij - i A j 5 0 (2.5a)

V 2 a 5 e( w 2 w *)( g 0 c ) a 1
ie2

2 p q
( g 0 l ) a 5 0 (2.5b)
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Equation (2.5a) is the A0 equation of motion (bosonic constraint), and

equation (2.5b) is the l equation of motion (fermionic constraint). These

two constraints form a supermultiplet. These are algebraic equations on the

component A0 field and the nonpropagating l field, respectively, and can be

used to eliminate them.

Subsequently, by carrying out the first iterative procedure, the expression

for the first-iterated Lagrangian reads

+(0) ® +(1) 5 w Ç P*w 1 w Ç *P w 1 AÇ i K
i
A 1 c Ç a K c a 1 j Ç 1 V 1

1 j Ç a
2 V 2 a 2 V (1) (2.6)

where V(1) is defined by

V (1) 5 V (0) ) V 1 5 V 2 5 0

5 2 - i w * - i w 1 P w P*w 1 m2 w * w 1 m c c 2 i c g i - i c 2 e2AÅ 2( w * w )

1 ieAi( - i w * w 2 w * - i w ) 1
p
e2 q ( w 2 w *)2 c c (2.7)

The extended configuration space is now defined by the set of variables

( w , P*w , w *, P w , Ai , c , l , j 1, j 2).

By continuing the FJ algorithm, it is easy to prove that no new con-

straints appear.

On the other hand, it is known that the FJ algorithm is unable to produce

an invertible symplectic matrix when it is applied to gauge field theories in

which true first-class constraints exist.

The invertibility is obtained by means of a gauge-fixing term we must

add to the classical Lagrangian density in order to break the gauge symmetry

of the symplectic potential. The simplest case is to consider the Coulomb

gauge for the U(1) statistical gauge field A m ,

F 5 - i A
i 5 0 (2.8)

Once the gauge-fixing condition (2.8) is given, the symplectic superma-

trix is invertible, thus providing the generalized FJ graded brackets in such

a particular gauge, which correspond to the graded Dirac brackets of the

model. Therefore, from the canonical point of view the dynamical information

provided by the symplectic FJ formalism is equivalent to that obtained by

means of the Dirac formalism for constrained systems.

Finally, from a simple algebraic computation it is easy to show that the
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following linear combination of constraints is the only true constraint in

this model:

V 5 e 1 - i P
i
A 2

e2

4 p q
e ij - iAj 2 5 0 (2.9)

Consequently, in a path-integral quantization formalism the construction

of the diagrammatics can be done by only considering this last constraint,

called in the Dirac language a first-class constraint.

3. PATH-INTEGRAL QUANTIZATION AND PERTURBATIVE
METHOD

In this section, we implement the perturbative method by constructing

the diagrammatics in the framework of the path-integral method according

to the Faddeev formalism for systems with first-class constraints.(29) The

partition function for the U(1) gauge supersymmetric model contains the

path integration on all the variables of the extended configuration space.
Performing the Gaussian integrals over the P w and P*w variables, we assume

that the starting partition function can be written as follows:

Z 5 # & $(Ai)$( w *)$( w )$( c )$( c ) d (F )

3 det[ V , F ] exp 1 i # d 3x +eff 2 (3.1)

where we have called +eff the original Lagrangian density (2.2). Moreover,

in order to obtain equation (3.1), the integral representation d ( V ) 5 * $ L
exp (i * d 3 x L V ) was used.

Therefore, by taking into account the arbitrariness of the multiplier L
and following the usual steps, it is possible to rescale the corresponding

integration variable in such a way as to recover the original Hamiltonian

density or symplectic potential.

In equation (3.1), the function det[ V , F ] is written as follows:

det[ V , F ] 5 e ¹ 2 d (x 2 y) Þ 0 (3.2)

As this determinant does not depend on the field variables, it is included in

the path-integral normalization factor.

Finally, we use the Faddeev±Popov trick to go over to a general covariant

gauge by writing the gauge-fixing condition (2.8) in the form - m A m 2
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c(x) 5 0, where c(x) is an arbitrary function. So we find the final expression

of the partition function (3.1):

Z 5 # $Ai$ w $ w *$ c $ c exp 1 i # d 3x+* 2 (3.3)

In this equation, the functional +* is given by

+* 5 +eff 1 +fix (3.4)

where

+fix 5
G
2

( - m A m )2 (3.5)

where G is a Lagrange multiplier.

Looking at equation (3.3), we can see that a fruitful form for the partition

function is obtained. The quantum problem is described in terms of a path

integral over all the independent field components of the model: Ai , w , w *,

c , and c . Subsequently, the problem can be treated using the diagrammatics
technique in the framework of the Feynman path-integral perturbation theory.

In principle, it is straightforward to go from the path integral (3.3) to the

Feynman rules for propagators and vertices.(27)

So we recognize the quadratic parts of the Lagrangian density +* as

representing the propagators and the remaining pieces as representing the
vertices. Consequently, +* defines the effective Lagrangian density of the

anyonic system under consideration and it can be partitioned as follows:

+* 5 +*(A m ) 1 +*( w *, w ) 1 +*( c , c )

1 +*int (A m , w *, w , c , c ) (3.6)

We have denoted

+*(A m ) 5 1±2 A m (D 2 1) m n A n (3.7a)

+*( w *, w ) 5 w *P 2 1 w (3.7b)

+*( c , c ) 5 c G 2 1 c (3.7c)

+*int(A m , w *, w , c , c ) 5 e2 w *A m V m n A n w

2 2 p q [ c c ( w 2 w *) w 2 c ( w 2 w *) c w *]

1 2ie w *A m - m w 1 e c g m A m c (3.7d)



1844 Manavella, Repetto, and Zandron

In equation (3.7a), the 3 3 3 matrix D 2 1 is the inverse of the propagator

associated to the field A m . So the propagator D m n (k) in the momentum space

can be evaluated as

D m n (k) 5
( 2 i)2 p q

e2 G k4 F 1 ie2

2 p q 2 k m k n 1 G k2k r e m n r G 5
k m k n

G k4 2
2 p i q
e2k2 k r e m n r

(3.8)

Furthermore, in (3.7b) and (3.7c), P 2 1 and G 2 1 are the inverses of the
propagators associated to the bosonic and fermionic anyonic matter fields,

respectively. In the momentum space, these propagators are given by

P(l) 5
1

l2 2 m2 (3.9)

G( p) 5
i( g ? p 1 m)

p2 2 m2 (3.10)

respectively.

Finally, equation (3.7d) is the part of the Lagrangian density which

accounts for the vertices of the model. There are two four-leg vertices. In
this equation, the 3 3 3 matrix V m n is written

V m n 5 1 1 0 0

0 1 0

0 0 1 2 (3.11)

The other vertices have three legs, one of which is derivative.

Now we can write the Feynman rules for propagators and vertices.

(i) Propagators : We associate with the propagator D m n (k) of the bosonic

field A m a wavy line connecting two generic points

We associate with the usual propagators of the bosonic P(l) and the

fermionic G( p) matter fields a dashed and a continuous line

----------- ---
l ®

and

Ð Ð Ð Ð Ð Ð
p ®

respectively.
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(ii) Vertices: The three-leg vertices 2ie - m and e g m of the model are

standed for

respectively. The four-leg vertices e2 V m n , 2 p q , and 2 2 p q are standed for

respectively.

Moreover, as usual, we have to take into account a minus sign for every

closed fermion loop and another minus sign for diagrams related to the

exchange of two fermion lines, internal or external. A combinatorial factor
correcting for double counting in the case that identical particles occur also

must be considered.

We do not treat here the problem of regularization and renormalization

of this model. However, by looking at the expressions of the propagators

and vertices and taking into account the above Feynman rules, complete

information about the perturbative behavior could be obtained. At least the
one-loop structure can be easily studied by analyzing the superficial degree

of divergence of the corresponding diagrams. It can be seen that this gauge

model belongs to the class of theories with only a finite number of divergent

diagrams. So the regularization and renormalization problem is reduced to

the problem of regularizing a superrenormalizable theory and it can be done

by the usual methods.

4. THE BRST FORMALISM

We are going to construct the BRST formalism for the constrained

Hamiltonian system under consideration by using most of the tools of ref. 28.

From the canonical point of view the quantized Hamiltonian system is
defined by the first-class constraint V given in equation (2.9), the Dirac

graded brackets for the dynamical variables, and the Hamiltonian (or symplec-

tic potential in the FJ language). Therefore, all the graded brackets we write

hereafter are understood as Dirac graded brackets (or generalized FJ brackets).
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Furthermore, since V(1) and V are first-class quantities, the more general

first-class Hamiltonian density for this model can be written as

V (1)* 5 V (1) 1 u V (4.1)

where u is a Lagrange multiplier.

Therefore, the following equations hold:

[ V , V ] 2 5 C V 5 0 (4.2a)

[H, V ] 2 5 V V 5 0 (4.2b)

where H 5 * d 2xV(1).
From (4.2a), trivially we note that C vanishes. Furthermore, from (4.2b),

we note that in the constrained Hamiltonian system under consideration, also

the coefficient V vanishes for a suitable choice of the Hamiltonian density

V(1), as occurs in any usual CS theory.

As is well known, in the BRST formalism it is convenient to treat the

Lagrange multiplier u defined in equation (4.1) on the same footing as
the remaining dynamical variables and to associate with them a canonical

momentum variable 3 such that

[u, 3] 2 5 1 (4.3)

If classically the momentum is constrained to vanish, we can be sure

that the dynamical structure of the theory does not change. Precisely, the
first-class constraint 3 5 0 generates the gauge transformation u ® u 1 v
of the multiplier, making evident their arbitrariness.

Consequently, from now on our set of variables will be

A J 5 (A i , w , w *, c , c , u) (4.4)

where the compound index J runs over the components of the field variables.

The set of canonical conjugate momenta corresponding to the field

variables is written as

P J 5 (P i
A, P*w , P w , P c , P c , 3) (4.5)

and the new first-class constraints are given by

GA 5 ( V , 3), A 5 1, 2 (4.6)

Therefore, the equations (4.2) take the form

[GA , GB] 2 5 CC
ABGC 5 0 (4.7a)

[H, GA] 2 5 V B
AGB 5 0 (4.7b)

with CC
AB 5 V B

A 5 0.
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Now, the BRST-invariant gauge-fixed Hamiltonian must be introduced

by considering the fermionic ghost fields (Majorana spinors) h A and their

canonical conjugate momenta P A. So the invariant gauge-fixed Hamiltonian
H x reads

H x 5 V (1) 1 [ x , Q]+ (4.8)

where x 5 P B v B, with v B being the gauge-fixing conditions given by the

set of quantities

v B 5 2 (u, F ) (4.9)

Furthermore, we assume that in the U(1) gauge supersymmetric model

we are considering, the BRST generator Q is given by the well-known

expression

Q 5 GA h A (4.10)

Looking at the constraint (4.6), we can see that it can be partitioned
into two subsets; therefore, we also assume that the ghosts and the antighosts

are introduced in such a way that

h A 5 ( h , P ) (4.11a)

P A 5 ( P , h ) (4.11b)

Therefore, the following canonical brackets hold:

[ h , P ]+ 5 1 (4.12a)

[ P , h ]+ 5 1 (4.12b)

So is easy to see that the expression for the Hamiltonian density * x reads

* x 5 V (1) 2 P P 2 V u 2 3F 2 h [F, V ] 2 h (4.13)

When an integration in the last term of equation (4.13) is performed and

since [F(x), V ( y)] 2 5 2 e ¹ 2 d (x 2 y) [see equation (3.2)], the last term is
written e h ¹ 2 h .

Consequently, the BRST Lagrangian density +BRST is given by

+BRST 5 AÇ i P
i
A 1 P w w Ç * 1 P*w w Ç 1 P c c Ç 1 P c c Ç 1 3uÇ (4.14)

1 P h Ç 1 h P Ç 2 * x
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When the constrained system has only first-class constraints as in the

present case, the partition function in the BRST formalism is written by

means of the following path integral:

Z 5 # $A J $P J $ h $ h $ P $ P exp 1 i # d 3x+BRST 2 (4.15)

This last expression for the partition function is equivalent to those

obtained by means of the Faddeev procedure, which was the starting expres-

sion used above [equation (3.1)] when the diagrammatics was constructed.
We conclude that the two methods give the same basic results and therefore

they can be considered as alternatives.

5. CONCLUSIONS

The pure supersymmetric anyon model was treated in the framework
of the FJ symplectic formalism. The constraint structure was analyzed and

the first-class constraint associated with the U(1) symmetry was found. A

simple gauge-fixing condition compatible with this constraint was proposed.

Next, by going over to the path-integral quantization method, the parti-

tion function was written. The gauge-fixing condition allows us to determine
the gauge-fixing part of the effective action. Furthermore, in the framework

of the perturbative formalism, the Feynman rules and the diagrammatics of

the pure supersymmetric anyon model are constructed. By means of the

propagators thus defined, all the diagrams are obtained by connecting vertices

and sources as usual.

The coupled system has three-leg and four-leg vertices. The vertex
structure is a direct consequence of the coupling properties of the supersym-

metric Lagrangian.

Moreover, looking at the diagrammatics, it is possible to conclude that

the model belongs to the class of superrenormalizable theories because it has

a finite number of divergent diagrams.

As briefly noted but not shown, by using the perturbative formalism
developed here all the information and prescriptions about the regularization

and renormalization of the model can be given.

In the last section, by using well-known tools and methods, the BRST

formalism of the gauge supersymmetric model was given. It was shown that

the partition function obtained from the BRST formalism is equivalent to

that obtained by means of the Faddeev method, as expected.
Finally, the results obtained by application of the FJ symplectic method

and those obtained from the usual Dirac formalism are equivalent. Neverthe-

less, the algebraic manipulations in the FJ symplectic method are shorter

than in the Dirac procedure.
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